If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+66x+116=0
a = 7; b = 66; c = +116;
Δ = b2-4ac
Δ = 662-4·7·116
Δ = 1108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1108}=\sqrt{4*277}=\sqrt{4}*\sqrt{277}=2\sqrt{277}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-2\sqrt{277}}{2*7}=\frac{-66-2\sqrt{277}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+2\sqrt{277}}{2*7}=\frac{-66+2\sqrt{277}}{14} $
| 0=50+10t-4.9t^2 | | n^2+30n-216=0 | | (125)^(2-2n)=25^n | | 1.8=2xx= | | 25/100*100=x | | 10^q=1.000.000.000 | | -12.78=-2.1n-2.16 | | x+95=50 | | 4(a-3)+2(a-)=7 | | x=(-1/3)y=-1 | | 3(x+3)=6x-3 | | 3(m+2)-4(m-1)4(m-1)=7 | | y=1500(0.86)^3 | | y=250000(0.965)^7 | | y=150000(1.8)^5 | | y=150.000(1.8)^5 | | 14x=80.010 | | 4+8=3x9 | | (2(40)+1)+(5y+19)=180 | | (3x-19)+(2x-1)=180 | | (8x+9)+81=180 | | w+39=-55 | | (9x-12)+(5x-4)=180 | | p+22=-66 | | 8x+11=7x+14=180 | | 732=(x+18) | | v=1/3x3.14x11x11x17 | | 3(0.05x)=0.10x(250.000-1 | | 11x+13=5+12x | | (8x-4)=(9x-11) | | (8x-1)+(9x-11)=180 | | (8x-4)=(9x-7) |